Biomedical Engineering

img-be-photos1-2009Biomedical Engineers are essential to the delivery of modern medical care that improves peoples’ health and helps them live longer, happier lives.

Biomedical engineers (BEs) help people by solving medical equipment and healthcare related problems using math, science and engineering principles. They design medical devices and systems and manage the manufacture, sales and use of this equipment in environments ranging from homes to hospitals.

The BE Program exposes students to these major BE specializations:

  • Electronic Medical Instrumentation
  • Medical Imaging and Signal Processing
  • Biomechanics, Sports Medicine, and Rehabilitation Engineering
  • Biomaterials, Tissue Engineering and Regenerative Medicine
  • Artificial Internal Organs
  • Systems Physiology and Modeling

This broad approach to BE allows students to explore the varied options available to biomedical engineers and postpone selecting a specific career path until their senior year.

BE provides a wide range of career options and is among the fastest growing engineering areas. BEs are instrumental in improving the quality and reducing the cost of health care. Cardiac pacemakers, CT scanners and artificial hips are just a few of the specific products with which BEs deal. Although BE coursework generally focuses on medical device design, development, production, and use, biomedical engineers can apply their board and deep engineering and life science knowledge to a wide range of related problems. For example, several program graduates now work in automotive safety and comfort related jobs. Others are physicians and lawyers. Some biomedical engineers start their own businesses developing new services or consulting with industry or research centers, while others work for the government developing and ensuring proper regulation of medical equipment.

The Results

The three-year average placement rate for MSOE biomedical engineering graduates was 94% in 2013-14, and graduates enjoyed an average starting salary of $59,500.

Upon graduation, MSOE BE students have immediately started great careers with companies such as:

  • Epic Systems
  • Fenwal, A Fresenius Kabi Company
  • GE Healthcare
  • Merge Healthcare
  • Michael Best & Friedrich LLP
  • NASA
  • Nordic Neurolab, Inc
  • Stryker
  • The MSOE BE advantage

    The biomedical engineering program at MSOE distinguishes itself through:

    • A well-rounded biomedical engineering curriculum that covers all the major specialty areas of biomedical engineering.
    • A balanced curriculum designed to equally prepare graduates for immediate employment, graduate study or professional (medicine or law) school.
    • Two junior year laboratory courses that combine material from multiple lecture courses to help students understand of how the diverse topics making up biomedical engineering fit together.
    • An extended (15 month) design experience that simulates industry and follows FDA design requirements and culminates in recommendations, based on a business analyses, regarding whether or not designs should be put into production.
    • Extensive coverage of fundamental math, science and general engineering topics to provide the foundation for biomedical engineering specific course work and successful careers.
    • Numerous general education and program electives that make the program compatible with a number of academic minors.
    • Formal and informal coverage and numerous opportunities practice the organizational, interpersonal, business and communications aspects of engineering.
    • A quarter, as opposed to semester, based academic calendar that maximizes the number of courses in the program.

    Recently completed BE design projects include a continuous blood glucose monitoring system, a knee joint ultrasound phantom, a measurement device for total knee replacement surgeries, and a performance feedback system for competitive rowers.

    You may want to consider BE if you …

    • Want to help people by advancing health care technology and systems.
    • Are excited by the idea of creating and working with the latest medical devices and systems.
    • Enjoy biology and chemistry as well as math and physics
    • Prefer activities involving equipment and processes rather than direct patient care
    • Want to help people live happier and healthier lives, but prefer not to pursue a nursing, medical, or other clinical career.

    Curriculum Year by Year

    Freshman Year

    Be introduced to the biomedical engineering profession and gain a solid foundation in biology, chemistry, mathematics and physics. Take a course in computer programming.

    Sophomore Year

    Continue studying mathematics, learn about human physiology, and learn basic engineering techniques. Start taking electives.

    Junior Year

    Learn specific biomedical engineering topics, such biotransport, biomaterials, biomechanics, electronics and biomedical instrumentation. Expand your electronics, mechanics and computer programming skills. Start your design project. Continue taking electives.

    Senior Year

    Learn high level engineering skills such as advanced electronics and instrumentation, medical imaging, and control theory. Finish taking your elective courses. Complete your capstone project by applying your knowledge and quantitative analysis and systematic synthesis skills to develop a working prototype that addresses a real-world problem.

    Accreditation

    This program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. Read more here.

    Program Director

    Dr. Charles Tritt
    Associate Professor
    tritt@msoe.edu

    Get Started
    MSOE Videos

    Explore Why People Choose MSOE

    labs

    USNewsRanking_c

    placement-rate

    USNewsRanking_B